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Abstract--This paper is devoted to finite deformation theory and more specifically to the dispersion of cones of 
lines about an axis in the neighbourhood of a point. The paper has been fully verified that when a small angle A0 in 
an initial sphere changes to A0 in the strain ellipsoid, the limit ratio 60/60 has extrema, provided AO is within the 
second principal plane and contains the first or third principal stretch axis. The extremum rule of angular 
variation is applied for principal stretch axes. For uniaxial tensile, pure shear, slide and simple shear, the author 
has derived the formulae of the principal stretch axes, and illustrated the equivalence relation of the rotation 
angle of the principal axes to the mean rotation angle of all line elements passing through a point. To determine 
the principal stretch axes of a fossil deformed in two dimensions, the author has used the curve of 0 against O, i.e. 
the orientation angle of a mark line in the deformed fossil against the one in the undeformed fossil. In the last part 
of this paper the analytical expressions of extreme stretch trajectories in a heterogeneous shear zone with the 
distribution of parabolic displacement are obtained. 

INTRODUCTION 

LARGE deformation is an important phenomenon in 
geology. The fundamental theory of finite deformation 
is due to Cauchy (1823, 1827, 1841). Since then, the 
theory of finite deformation has advanced considerably 
(Truesdell & Toupin 1960, Truesdell & Noll 1965). 
Many geometric techniques and analytical approaches 
to structural deformation have been put forward (Bred- 
din 1956, Flinn 1962, Wellman 1962, Ramsay 1967, 
Cobbold 1979, 1988, De Paor 1983, Ramsay & Huber 
1983). In finite deformation, the dispersion of cones of 
lines about an axis is of great interest to geologists 
(March 1932, Owens 1973, De Paor 1981), because 
changes in angles as a result of strain are often used in 
determining the strain state. Based on finite defor- 
mation theory, this paper first verifies that the ratio of 
angular variation 6 0 / 6 0  possesses extrema. In the 
second section of the paper, the extremum rule is ap- 
plied to determine the ratio of principal elongations and 
their orientations in a two-dimensional homogeneous 
deformation field as well as in a deformed fossil. The last 
part of this paper shows how to obtain the principal 
stretch trajectories in a heterogeneous shear zone where 
the displacement field has been shown. 

THE EXTREMUM RULE OF ANGULAR 
VARIATION IN THE NEIGHBOURHOOD OF A 

POINT 

Truesdell & Toupin (1960) comprehensively reviewed 
the theory of finite deformation and its historical devel- 
opment up to the early 1960s with abundant references. 
We summarize some important features of finite defor- 
mation: an infinitesimal material sphere at space point P 
becomes an ellipsoid at space point p; the principal axes 

of the ellipsoid are mutually perpendicular, both before 
and after deformation; if along these axes the stretches 
take extrema 21/2, 21/2 a n d  ,~,~/2 (~,I/2 ~ / ] 1 / 2  ~ ,~1/2~3 1, they 
stand in the same ratios as the lengths of the principal 
semi-axes of the ellipsoid; perpendicular diameters of 
the sphere at P become conjugate diameters of the 
ellipsoid at p. We now prove a new feature, the extre- 
mum rule of angular variation: 

Let N be a unit vector along dP, which is a small vector 
at point P (Fig. 1). An original small angle AO between 
dP and dP', a small vector near dP at P, is deformed into 
a small angle A0. If AO is in the second principal plane, 
then the limit ratio 6 0 ( N ) / 6 0  maximizes t o  (/].1/23) 1/2 in 
the third principal direction (in which the stretch is 
minimal) and minimizes to (23/)1.i) 1/2 in the first principal 
direction (in which the stretch is maximum). For arbi- 
trary direction N, there exists in general 

;t3/I/2 b0(N) < (21/1'2 
" (1) 

P r o o f  

Verification will be conducted in the neighbourhood 
of a point. For the convenience of discussion, we let the 
radius of the original sphere be a unit and the lengths of 
principal semiaxes of the ellipsoid 0e/~1" -1/2 ,/t2"I/2 and 21/2 . In 
Fig. 1, 

IdPl = PQ = Idv'l -- PQ' = 1 (2) 

and the angle AO between PQ and PQ' is set in plane W. 
After deformation, dP--~ dp = ~--~, dP' --~ d p ' =  ~--~', 
plane W---~ plane w, circle L---~ ellipse l, A O ~  A0. 
Geometrically let qs be perpendicular to pq' and 
pk = pq. If AO is small enough, then we have approxi- 
mately 

(AO)2  ~ ( Q Q , ) 2  (3) 
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Fig. 1. Small-angle transformation in the neighbourhood of a point. 

(A0) 2 ~ (qk/pq) 2 ~ (qs/pq) 2 = (qq' • sin ~p,/pq)2 (4) 

A0/AO ~ qq ' .  sin ~p'/(QQ'-pq). (5) 

Taking AO --> 0, then ~O' --> ~p, it follows that 

60 _ sin ~p lim (qq' /QQ') ,  (6) 
60  pq ao-,0 

where ~p is the acute angle between pq and the tangent to 
the ellipse l at point q. Evidently lim (qq' /QQ')  is the 

AO-*0 

stretch along the tangent, namely the stretch in the 
direction of dp~, which conjugates with dp to the ellipse 
l, therefore 

lim ( q q ' / Q O ' ) =  Idp~l/ldP~l--[dp~l, (7) 
AO---~0 

here dP~ in the circle L is the inverse image of dp~. 
Consequently, equation (6) takes the simpler form 

60/60 = ]dp~ I • sin ~p/ldpl = h/]dp] (8) 

or  

6 0 / 6 0  = Idp l • c o s   '(N,N )/Idpl 

= (2r/2)1/2 COS ) ' (N,N~).  (9) 

In the above 21/2 ~--" Idp~l, 21/2 = Idpl, ~'(N,N0 = ~/2 - % 
i.e. the shear of the directions N = dP and N~ = dP~. 
Writing A I/2 = I dx~ [ and A 1/2 = I dx3 ] for the lengths of the 
major and minor semi-axes of ellipse l. If dp =+dx~,  

then dp~ = dx3, and y(N,N 0 = 0. From equation (8), we 
have 

60160 = (A3/A1) 1/2. (10) 

In reverse, if d p =  +dx3, then 

60160 = (ALIA3) 1/2. (11) 

But A31/2 ~< h, [dp[ ~< AI/2, there exists generally 

(A3/AI) 1/2 ~ 60/60 <- (AJA3) ~/2. (12) 

A1/2 Nevertheless AI/2 ~< 21/2 and 231/2 ~< 3 , it follows that 

(23) 1/2 60(N) ~ ( 2 1 )  1/2 
21/ 6 o  . (13) 

This is valid for arbitrary direction N in the sphere. In 
equation (13), the left or right equality holds if and only 
if AO is in the second principal plane and N coincides 
with the first principal direction NI or the third principal 
direction N 3. Hence the proof is completed in three 
dimensions. 

If deformation is restricted to two dimensions, 
equation (13) is easily derived from the following for- 
mula (Ramsay 1967): 

tan 0 = \21] tan O. (14) 

For incompressible material, we have the equation 
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(212223) 1/2= 1. (15) 

If  de format ion  is two-dimensional  and 2~/2 = 1, we get 
the extremal  stretches f rom equat ion  (13) and (15) as 
follows: 

21 = d0(N3)/dO , 23 = 60(NO~dO. (16) 

A P P L Y I N G  T H E  E X T R E M U M  R U L E  T O  

D E T E R M I N E  T H E  P R I N C I P A L  S T R E T C H  A X E S  

O F  T W O - D I M E N S I O N A L  S T R A I N  

In case of  large deformat ion ,  the principal directions 
and fibres of  strain change with deformat ion .  By means  
of  the ex t remum rule of  angular  variat ion,  we can find 
the major  and minor  axes of  a strained ellipse on any 
microplane  th rough  a given point ,  p rovided  the relation 
of  A0 to AO in the plane would  be known regardless of  
which direction is defined as the initial value of  0 or  O. 

Table  1 gives some formulae  for  analysis of  strain in 
two-dimensional  de format ion  fields: uniaxial tensile, 
pure  shear,  slide and simple shear.  Let  q~ = 0 - O be the 
rota t ion angle of  a line e lement  with the initial azimuth 
O. As the ex t remum points  of  d0/dO,  principal direc- 
tions O1 and O2 must  respond  to the inflection points  of  
the q~-O curve.  In Fig. 2, the principal directions O1 and 
O2, de te rmined  by the inflection points  P and Q, are well 
consistent with the results f rom Table  1. Moreove r  the 
area under  ~ - O  curve convinces us that  the rotat ion 
angle of  a principal stretch axis is equal to ~,  the mean  
value of  the rota t ion angles of  all line e lements  passing 
th rough  the point.  

For  unia×ial tensile or  pure shear,  we may  well say 
that the ne ighbourhood  of  a point  as a whole  does not  

rota te  or  ~ is equal to zero,  because the rotat ions of  line 
e lements  are symmetr ic  about  the principal axes so that 
the area summed  under  the q~-O curve vanishes. In such 
cases, O1,2 and 01,2 remain  constant  during deformat ion ,  
therefore  the principal directions and fibres are fixed all 
along. 

For  slide or  simple shear,  since the area summed  
under  the curve is negative,  the mean  rota t ion angle ~ is 
negative too. We may  consider  that the ne ighbourhood  
of  a point  as a whole  or  each line e lement  in the 
ne ighbourhood  rotates clockwise at the angle qS. As the 
angle (p is relevant to shear  amoun t  7, the principal 
directions vary with 7. In case of  simple shear,  the fibre 
possessing the first principal direction will al ternate f rom 
the original :if4 fibre to the :r/2 fibre when 7 is increasing. 
But  in case of  slide, the principal fibres do not  vary with 
7. Figure 2(c) also shows us two interesting p h e n o m e n a  
which could not  be predicted by small deformat ion  
theory:  (1) some line elements  rota te  at larger angles 
than 7 and (2) others  rota te  against 7. 

In structural geology,  de fo rmed  fossils are generally 
used as almost perfect  strain gauges to determine the 
state of  finite strain in sedimentary  strata,  if the fossils 
were  originally interred in sediment  and are strained 
homogeneous ly  with the rock that  encloses them. 
Accord ing  to the ex t remum rule, we can determine the 
ratio of  principal e longat ion (22/21) 1/2 and principal 
stretch axes within a single de fo rmed  fossil such as 
brachiopod,  lamell ibranch and so on by using the 0 - O  
curve,  where  O (or 0) is defined as an angle in the 
unde fo rmed  (or deformed)  state. Figure 3(a) shows a 
de fo rmed  brachiopod.  We arbitrarily take two azimuths 
as the initial values of  O and 0, and assume that the 
original lines O A o - O A  s were regularly scat tered in the 

Table 1. Formulae of strain analysis in two dimensions are derived by using the extremum rule of angular variation. (X, Y)/(x,y), co-ordinates of 
a material point with respect to a fixed co-ordinate frame before and after deformation; O/0, the angle included between a line element and 
horizontal axis before/after deformation; O1/O2, the first/second principal stretch direction before deformation; 01/02, the first/second principal 

stretch direction after deformation; ~, the mean rotation angle of the neighbourhood of a point in the deformation field 

Uniaxial tensile Pure shear Slide Simple shear 

Transformation function x = X 
y = (1 + 2)Y 

tan 0 - dy 0(1 + ).)tan O 
dx 

dO 1+2  
dO cos 20 + (1 + 2) 2 sin 20 

zg 
O~ 

0 2 0 

01 

02 0 

(2_2] '/2 dO(02) 
• 2 ]  - -  dO 1 + 2 

0 

x = X+ Ytan 7 x = X + Ysin 7 x = X+ Ytan 7 
y=XtanT+Y y= Ycos 7 y=  Y 

tan O + tan 7 tan O cos 7 tan O 
1 +tanOtan7 1 +tanOsiny 1 +tanOtan7 

1 - tan 27 cos 7 1 + tan 2 O 
l+ t an  27+2sin2Otan7 l+s in  2Osin7 (l + tan O tan 7) 2+tan 20 

~ n _ 1 arctan(2 cot 7) 

3~ 3n 1 
- 2arctan(2 cot 7) 4 4 

n_ arctan(sec 7 - tan 7) 
4 

3zr - -  - arctan(sec 7 + tan 7) 
4 

ll+tanT-tan7 secT+tan7 (taX/i~znzV24+tanT) 2 

0 7- arctan(½tan 7) 
2 

- O2 

- O l  
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Fig. 2. The curve of q5 against O shows the distribution of rotation angles of line elements passing through a point. P and Q 
are the inflection points of the curve and determine the first and second principal directions of strain in the deformation 

field, qS is the mean value of rotation angles of all line elements passing through the point. 
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Fig. 3. Application of the extremum rule of angular variation to determine principal directions of strain in a brachiopod 
fossil. (a) The mark lines OAo-OA s on the surface of the fossil are supposed to scatter regularly in the original fossil. OA]' 
and OA~, respectively, are the extensions of AIO and A20, The dash lines OP and OQ have been determined to be the first 
and second principle stretch directions by 0 e and 0 o. (b) The curve of 0 against O. The initial values of O and 0 are both 
defined to OA 0. The angles 0p and 0o, responding to inflection points P and O of the curve, show the first and second 

principal directions. 
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Fig. 4. The imagined radial lines O A 0 - O A  s on the surface of a fossil 
(a) cephalopod or (b) ammonoids would be used for the principal axes 
of strain in the fossil, provided an original angle included between one 
of the lines and OA 0 might be defined by the biological rule of the 

original body (after Ramsay 1967). 

1.5 

(b) 

1.0 

0.5 

-0.5 

Y 

undeformed fossil. For convenience, we define the 
initial values of both O and 0 to the same azimuth as 
OA0. In accordance with the extremum rule, the angles -1.0 
0e and 0 o ,  which respond to the inflection points P and 
Q of the curve (Fig. 3b), give, respectively, the direc- 
tions of maximum and minimum stretches in the de- 
formed fossil, and the ratio of principal elongation -1.5 
(22/~,1) I/2 should be equal to the slope of the curve at 
point P, i.e. 

(22/2~) ~/2 = dO(P)/dO -~ 0.35. (17) 

It is evident that the accuracy of the calculation of -2.0 -1.0 
principal stretch axes depends directly upon the number 
of mark lines on the surface of a deformed fossil and few 
mark lines bring about considerable error.  When a fossil 

0.0 X 

I I 
-0.5 0.0 0.5 1.0 

Fig. 5. (a) The distribution of displacement in a heterogeneous shear 
zone: v = v0(2 - IxI)s. (b) The trajectories of maximal stretch I2 l (X) 

and minimal stretch ?2(X). 
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is deficient in radial mark lines, we may utilize the 
biological features of the fossil to form new radial lines 
(Fig. 4), provided the angle included between any two of 
the new radial lines would be known, both before and 
after deformation. 

E X T R E M A L  S T R E T C H  T R A J E C T O R I E S  I N  
H E T E R O G E N E O U S  S H E A R  Z O N E  

The trajectories of principal stretches in a hetero- 
geneous shear zone is a subject of structural geology 
(Ramsay 1967, 1980, Ramsay & Graham 1970, Cobbold 
1979, 1980, Cobbold & Barbotin 1988). Although it is 
still difficult to obtain the analytical expressions of the 
trajectories, the extremum rule of angular variation 
makes it possible. Here we give an example. 

In consideration of the antisymmetry of the zone, we 
may conduct the study in a half of the zone. Let the width 
of the zone be two units. I?I(X) and I;'2(X ) express the 
equations of maximum and minimum stretch trajec- 
tories in the deformed state and, Y~(X) and Y2(AD in the 
undeformed state. We assume the displacement func- 
tion to be (Fig. 5a) 

v = v0(2 - X)X, (18) 

where Vo is a constant. Shear 7 is then determined by 

tan 7 = dv/dX = 2vo(1 - X). (19) 

From Fig. 5(b), we can set up the following relation 

dX/dY1 = tan 01. (20) 

But from Table 1, we have 

01 ~___ __0  2 = 1 arctan (2 cot 7), (21) 

thus equation (20) becomes 

dX/d~'l = 2/(X/tan 27 + 4 + tan 7). (22) 

Solving differential equation (22) with equation (19), we 
obtain 

l?l(J 0 = tvt)lX/(1 - J 0  2 + 1/v 2 + 1 - X]dX (23) 

o r  

vo(1 - X/2)X + ~vo(X - 1)x/(1 - x )  2 + ? l ( x )  1/v~ 

+ ~ 1  i n [ X -  1 + ~/(1 - X ) 2 +  1/v2]+ C.(24) 
2Vo 

Using the condition 97" 1(0) = 0, the constant C is deter- 
mined as 

C = ~ v0V'l + 1/v~ - In 1 ~ / ~  - 1 . (25) 

For the whole shear zone, the equation of maximum 
stretch trajectory is written as 

IT',(X) = sign(S){v0(1 - I s l / 2 ) l s l  

+ lv0( ]X [ - 1)%/(1 - I X I )  2 + 1/v~) 

+ 2v----01 In [IX[ - 1 + ~/(1 - IXI) 2 + 1/v 2] + C} 

Similarly we have 

I7"2(X) = sign(X){v0(1 - Isl/2) lsl 

- ~ vo(IxI  - 1 ) w ' ( 1  - Ix [ )  2 + 1/v g 

(26) 

- 2vo 1-j-In [IxI - 1 + ~ / ( 1  - IxI )  + l/v 2] - c} 

(27) 

Y1 ( S )  = - "Y2(S), Y2 ( X )  = - ]7" 1 ( X ) .  (28)  

In fact YI(X) and Y2(X), respectively, are the mirror 
images of I;'2(X ) and I;'t (X), if a plane mirror is set along 
X axis. Figure 5(b) shows the trajectories f ' t(X) and 
I 2(X). 

In conclusion, the extremum rule of angular variation 
is an essential rule of finite deformation. It shows the 
importance of line element rotations in the neighbour- 
hood of a point. As a practical approach to analysis of 
strain, the extremum rule has wide potential for appli- 
cation in analysis of structural deformation. Some appli- 
cations will be reported in later papers. 
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